Part Number Hot Search : 
SP6231ER ZUR77W F800B EFC480C RA9113Z 11250AUT 23Z435SM HV832X
Product Description
Full Text Search
 

To Download V23990-P585-A208-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p585-*2*-pm flow1 600v/30a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt4 / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives v23990-p585-a20-pm v23990-p585-a20y-pm V23990-P585-A208-PM v23990-p585-c20-pm v23990-p585-c20y-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 50 hz half sine wave t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 30 t c =80c 39 t h =80c 55 t c =80c 84 t sc t j 150c 6 s v cc v ge =15v 360 v types 90 20 p tot gate-emitter peak voltage power dissipation per diode i 2 t w i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 250 a a features flow1 target applications schematic dc forward current surge forward current t j =25c 310 t j =t j max t j =t j max p tot t p =10ms pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage dc collector current t j =t j max t j =t j max v ce 1200v, t j t op max t p limited by t j max a 600 a v 90 v ce i c v ge i cpulse t j max w a v c 175
v23990-p585-*2*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 25 t c =80c 33 t h =80c 46 t c =80c 69 brake transistor 600 t h =80c 22 t c =80c 28 t h =80c 45 t c =80c 68 t sc t j 150c 6 s v cc v ge =15v 360 v brake diode 600 t h =80c 14 t c =80c 19 t h =80c 20 t c =80c 30 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 40 60 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance -40+(tjmax - 25) c storage temperature t stg -40+125 c peak repetitive reverse voltage w a a t p limited by t j max maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current c t j =t j max a i f v rrm a i frm v rrm v ce i cpuls i c v ge v power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current w 175 c maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode collector-emitter break down voltage pulsed collector current gate-emitter peak voltage p tot v c w t p limited by t j max t j =t j max 20 a 65 a 60 175 maximum junction temperature t j max t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation per igbt v ce 1200v, t j t op max v a v t j max i frm p tot 600 copyright vincotech 2 revision: 2
v23990-p585-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh 1,89 thermal resistance chip to heatsink per chip r thjh 1,17 tj=25c 4,1 4,9 5,7 tj=125c tj=25c 1,1 1,70 1,9 tj=125c 1,77 tj=25c 0,04 tj=125c 1 tj=25c 300 tj=125c tj=25c 93 tj=125c 93,5 tj=25c 15 tj=125c 17,5 tj=25c 141 tj=125c 159,5 tj=25c 67,1 tj=125c 86,7 tj=25c 0,42 tj=125c 0,63 tj=25c 0,59 tj=125c 0,80 thermal resistance chip to heatsink per chip r thjh 1,6 thermal resistance chip to heatsink per chip r thjh 1,37 tj=25c k/w preapplied phase change material ma pf 1 08 mws ns nc na k/w v 50 thermal grease thickness 50um = 1 w/mk 1 500 300 30 0,00043 25 0 480 30 600 collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current turn-on energy loss per pulse reverse transfer capacitance gate charge c ies 30 15 rgon=16 0 2 0 15 rgoff=16 f=1mhz r everse current i r k/w v v m ma 3 0 30 30 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions input capacitance o utput capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) c oss c rss q gate t r t d(off) v ce =v ge 0 15 v - tj=25c 167 1630 thermal grease thickness 50um = 1 w/mk p reapplied phase change material k/w copyright vincotech 3 revision: 2
v23990-p585-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions tj=25c 1,25 1,75 1,95 tj=125c 1,70 tj=25c 29 tj=125c 34 tj=25c 35 tj=125c 183 tj=25c 1,20 tj=125c 2,16 di(rec)max tj=25c 2200 /dt tj=125c 1576 tj=25c 0,23 tj=125c 0,45 thermal resistance chip to heatsink per chip r thjh 2,07 thermal resistance chip to heatsink per chip r thjh 1,78 k/w tj=25c 5 5,8 6,5 tj=125c tj=25c 1,1 1,55 1,9 tj=125c 1,75 tj=25c 0,04 tj=125c 1 tj=25c 300 tj=125c - tj=25c 126 tj=125c 128 tj=25c 18 tj=125c 21 tj=25c 161 tj=125c 179 tj=25c 105 tj=125c 114 tj=25c 0,44 tj=125c 0,59 tj=25c 0,49 tj=125c 0,63 thermal resistance chip to heatsink per chip r thjh 2,12 thermal resistance chip to heatsink per chip r thjh 1,83 71 1100 ns a v 600 300 25 20 thermal grease thickness 50um = 1 w/mk p reapplied phase change material rgon=16 ma n a ns pf mws 20 20 2 0 15 0 0 rgon=32 rgoff=32 v ce =v ge f=1mhz i ges 0 15 15 480 300 reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge inverter diode peak reverse recovery current d iode forward voltage -15 30 mws a/s k/w c i rrm v f erec q rr t rr brake transistor k/w n c k/w c oss e on output capacitance c rss c ies integrated gate resistor thermal grease thickness 50um = 1 w/mk t f fall time t d(on) t r turn-off delay time t d(off) e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time gate charge input capacitance q gate reverse transfer capacitance gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage 20 0,00029 120 tj=25c 32 tj=25c v v 30 preapplied phase change material copyright vincotech 4 revision: 2
v23990-p585-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions tj=25c 1,25 1,43 1,95 tj=125c 1,29 tj=25c 27 tj=125c tj=25c 10 tj=125c 11 tj=25c 28 tj=125c 134 tj=25c 0,29 tj=125c 0,29 di(rec)max tj=25c 1247 /dt tj=125c 443 tj=25c 0,051 tj=125c 0,100 thermal resistance chip to heatsink per chip r thjh 3,53 thermal resistance chip to heatsink per chip r thjh 3,07 preapplied phase change material tj=25c tj=25c tj=25c tj=25c 600 300 20 20 rgon=32 rgon=32 thermistor thermal grease t hickness 50um = 1 w/mk - 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time i rrm diode forward voltage reverse leakage current v f i r ? r/r r ated resistance r power dissipation constant deviation of r25 mw/k power dissipation p mw peak rate of fall of recovery current peak reverse recovery current reverse recovered charge 2 200 5 -5 % 22000 m ws c v k/w k/w a n s a/s a b-value b (25/50) tol. 3% tj=25c 3950 k b (25/100) tj=25c 3996 k b-value vincotech ntc reference b tj=25c copyright vincotech 5 revision: 2
v23990-p585-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 9 18 27 36 45 0,0 0,4 0,8 1,2 1,6 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 6 revision: 2
v23990-p585-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 30 a r goff = 16 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 30 a output inverter e on high t e off high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 10 20 30 40 50 60 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 0 10 20 30 40 50 60 70 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 i c (a) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 70 r g ( w ) e (mws) copyright vincotech 7 revision: 2
v23990-p585-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 30 a r goff = 16 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 30 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,1 0,2 0,3 0,4 0 14 28 42 56 70 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,1 0,2 0,2 0,3 0 10 20 30 40 50 60 i c (a) t rr ( m s) copyright vincotech 8 revision: 2
v23990-p585-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 30 a r gon = 16 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 30 a r gon = 16 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,5 1 1,5 2 2,5 0 10 20 30 40 50 60 70 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,5 1 1,5 2 2,5 3 0 10 20 30 40 50 60 i c (a) q rr ( m c) copyright vincotech 9 revision: 2
v23990-p585-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 30 a r gon = 16 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,60 k/w rthjh = 1,37 k/w r thjh = 2,07 k/w rthjh = 1,78 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,09 3,0e+00 2,57 3,0e+00 0,09 2,7e+00 2,34 2,7e+00 0,36 4,1e-01 0,35 4,1e-01 0,36 3,1e-01 0,27 3,1e-01 0,67 1,1e-01 0,10 1,1e-01 0,72 7,9e-02 0,07 7,9e-02 0,39 1,7e-02 0,01 1,7e-02 0,52 1,6e-02 0,01 1,6e-02 0,11 2,8e-03 0,00 2,8e-03 0,21 2,8e-03 0,00 2,8e-03 0,11 2,7e-04 0,00 2,7e-04 0,18 3,3e-04 0,00 3,3e-04 phase change material phase change material output inverter thermal grease phase change material thermal grease phase change material t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt di rec /dt high t 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 10 20 30 40 50 60 70 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec /dt low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 500 1000 1500 2000 2500 3000 3500 0 10 20 30 40 50 60 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 10 revision: 2
v23990-p585-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 30 60 90 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 18 36 54 72 90 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 11 revision: 2
v23990-p585-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 30 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 600 v v ce 600 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 3 6 9 12 15 18 0 35 70 105 140 175 210 q g (nc) v ge (v) 120v 480v 5 7 9 11 13 10 11 12 13 14 15 v ge (v) t sc (s) 0 100 200 300 400 500 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 12 revision: 2
v23990-p585-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 20 40 60 80 100 0 150 300 450 600 750 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 13 revision: 2
v23990-p585-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 0 4 8 12 16 20 24 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 14 revision: 2
v23990-p585-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 i c = 20 a r goff = 32 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 i c = 20 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0,3 0 5 10 15 20 25 30 35 40 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) e off t j = t jmax -25c e on e on t j = 25c e off 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 5 10 15 20 25 30 35 40 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) copyright vincotech 15 revision: 2
v23990-p585-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 i c = 20 a r goff = 32 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2,12 k/w r thjh = 1,83 k/w r thjh = 3,53 k/w r thjh = 3,07 k/w thermal grease phase change material brake thermal grease phase change material t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 35 40 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 16 revision: 2
v23990-p585-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc brake 0 15 30 45 60 75 90 0 35 70 105 140 175 t h ( o c) p tot (w) 0 7 14 21 28 35 0 50 100 150 200 t h ( o c) i c (a) 0 9 18 27 36 45 0 30 60 90 120 150 th ( o c) p tot (w) 0 5 10 15 20 25 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 17 revision: 2
v23990-p585-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,89 k/w r thjh = 1,62 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc phase change material thermal grease input rectifier bridge 0 15 30 45 60 75 90 0 0,25 0,5 0,75 1 1,25 1,5 1,75 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 90 0 30 60 90 120 150 t h ( o c) p tot (w) 0 15 30 45 60 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 18 revision: 2
v23990-p585-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 25 45 65 85 105 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 19 revision: 2
v23990-p585-*2*-pm t j 125 c r gon 4  r goff 4  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,29 s t don = 0,11 s t eoff = 0,67 s t eon = 0,39 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,11 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -40 -20 0 20 40 60 80 100 120 140 -0,4 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -25 0 25 50 75 100 125 150 175 200 4,8 5 5,2 5,4 5,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -10 25 60 95 130 165 200 4,9 5 5,1 5,2 5,3 5,4 time(us) % t r v ce i c copyright vincotech 20 revision: 2
v23990-p585-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 59,91 kw p on (100%) = 59,91 kw e off (100%) = 8,87 mj e on (100%) = 12,48 mj t eoff = 0,67 s t eon = 0,39 s figure 7 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 100 a i rrm (100%) = -83 a t rr = 0,51 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 140 180 4,8 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 5 5,2 5,4 5,6 5,8 time(us) % i d v d fitted copyright vincotech 21 revision: 2
v23990-p585-*2*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 59,91 kw q rr (100%) = 20,73 c e rec (100%) = 7,85 mj t qrr = 1,03 s t erec = 1,03 s switching definitions output inverter t qrr -100 -50 0 50 100 150 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 % i d q rr time(us) -20 0 20 40 60 80 100 120 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % p rec e rec t erec copyright vincotech 22 revision: 2
v23990-p585-*2*-pm in datamatrix as in packaging barcode as p585-a20-pm p585-a20-pm p585-a20y-pm p585-a20y-pm p585-a208-pm p585-a208-pm p585-c20-pm p585-c20-pm p585-c20y-pm p585-c20y-pm a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 w/o pin 1,31,32 rectifier break igbt break fwd ordering code pin table 17mm housing with solder pins w/o breake v23990-p585-c20-pm pin table pin table v23990-p585-a20-pm v23990-p585-a20y-pm v23990-p585-c20y-pm inverter igbt inverter fwd outline V23990-P585-A208-PM pinout ordering code & marking ordering code and marking - outline - pinout features version 17mm housing with solder pins and breake 17mm housing with pressfit pins and breake 17mm housing with pressfit pins w/o breake 12mm housing with solder pins and breake
v23990-p585-*2*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 24 revision: 2


▲Up To Search▲   

 
Price & Availability of V23990-P585-A208-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X